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Abstract. In many interesting physical settings, such as the vulcanization of rubber, the intro-
duction of permanent random constraints between the constituents of a homogeneous fluid can cause
a phase transition to a random solid state. In this random solid state, particles are permanently
but randomly localized in space, and a rigidity to shear deformations emerges. Owing to the
permanence of the random constraints, this phase transition is an equilibrium transition, which
confers on it a simplicity (at least relative to the conventional glass transition) in the sense that
it is amenable to treatment by established techniques of equilibrium statistical mechanics. In
this paper I shall review recent developments in the theory of random solidification for systems
obeying permanent random constraints, with the aim of bringing to the fore the similarities of and
differences between such systems and those exhibiting the conventional glass transition. I shall
also report new results, obtained in collaboration with Weiqun Peng, on equilibrium correlations
and susceptibilities that signal the approach of the random solidification transition, discussing the
physical interpretation and values of these quantities both at the Gaussian level of approximation
and, via a renormalization-group approach, beyond.

1. Introduction

My aim in this article is to give a brief overview of recent developments in the theory of random
solidification for systems obeying permanent random constraints. Along the way, I hope to
bring to the fore the similarities of and differences between such systems and those exhibiting
the conventional glass transition. I shall not dwell on detailed technical matters, as they can
be found in a number of articles which I will cite and which are readily available‡. (Nor shall
I attempt to provide a complete set of references.) Instead, I shall focus on what I regard as
essential matters of principle.

The classic example of a system that undergoes random solidification in response to
the imposition of a sufficient density of permanent random constraints on the motion of
its constituents is vulcanized rubber. Prior to vulcanization, the system consists of a more
or less viscous fluid of flexible macromolecules. Vulcanization amounts to the imposition
of permanent covalent chemical bonds between randomly chosen atoms on the macro-
molecules. Both the chemical bonds defining the macromolecules and the bonds introduced
by vulcanization will be regarded as permanent. Although, of course, no chemical bonds are

† http://w3.physics.uiuc.edu/∼goldbart.
‡ For a detailed account of work prior to 1996, emphasizing both concepts and techniques, see reference [1]. For
informal accounts, stressing concepts more than techniques, see references [2, 3].
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truly permanent, this means that we shall regard the breaking of these bonds to be extremely
rare on the timescale needed for the unconstrained freedoms to equilibrate. This separation
of timescales provides the window necessary for the applicability of equilibrium statistical
mechanics to the unconstrained freedoms, subject to the vulcanization constraints which play
the role of quenched random variables.

A second example is provided by chemical gels, such as silica gel, in which low-molecular-
weight objects (rather than macromolecules) are permanently bonded together at random
(e.g. by a condensation/elimination reaction) so as to build up a giant random molecule. It is
useful to regard chemical gels, too, as systems that undergo random solidification in response to
the introduction of a sufficient density of permanent random constraints (i.e. random covalent
bonds).

What do we mean when we say: random permanent constraints lead to random solid-
ification? We mean that the system undergoes a phase transition (as it happens, continuous),
as the density of constraints is increased beyond some critical value, with the following
characteristics. At subcritical densities the system is fluid in the following two senses: (i) it does
not respond to an applied zero-frequency shear strain by developing a zero-frequency shear
stress; and (ii) none of the particles in the system is localized and instead, given sufficient time,
all wander throughout the (essentially infinite) container. On the other hand, at supercritical
densities of constraints the system is a solid in both senses: (i) it responds to an applied zero-
frequency shear strain by developing a zero-frequency shear stress; and (ii) at least a fraction
of the particles in the system are localized, so instead of wandering throughout the container
they remain in the vicinity of their mean positions, from which they make thermally driven
excursions of only finite spatial extent. The fundamental competition leading to the transition
is one between translational entropy, which favours delocalization, and crosslinking, which
favours localization. Note that the transition is driven by crosslink density, not temperature.

As for the randomness of the emergent solid, this means that although translational sym-
metry is spontaneously broken—at least some particles acquiring random mean positions
about which they undergo thermal motion—it is broken randomly, in the sense that there is
no crystalline long-range order to the collection of mean positions: Fourier analysis, as we
shall see more concretely in section 3, detects no long-range periodicity to the mean positions.
Furthermore, there is a second level of randomness to the emergent solid. Not only are the
mean particle positions distributed at random throughout the container but, also, every localized
particle experiences a distinct environment. This shows up, e.g., via a statistical continuum
of r.m.s. displacements of the localized particles (measured from their mean positions), i.e., a
statistical distribution of localization lengths.

There is a subtlety here concerning the notion of localization that is worth commenting on.
At temperatures below its melting temperature, the equilibrium state of, say, the element Cu is a
crystalline solid, in the sense that an infinitesimal stress produces an infinitesimal strain (rather
than strain rate, as it would in a fluid). However, the Cu atoms are not localized: vacancy motion
causes them to diffuse, albeit slowly, throughout the crystal. In contrast, the permanence of
the chemical bonds in vulcanized macromolecular systems, both intra- and inter-molecular,
at least on the timescale of envisaged experiments, allows for true localization. In this sense,
vulcanized matter forms solids that are simpler than ‘simple’ solids, such as crystalline Cu.

2. Connections with glasses: freezing in of correlations

Now, the title of the conference for which this paper was prepared is Unifying Concepts in
Glass Physics, so I would like to make some general remarks about the relationship between
vulcanized systems and the kinds of systems that are conventionally referred to as glassy. For
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reasons that I hope will become apparent, I believe that it may be profitable to regard vulcanized
systems as model glasses (see reference [2]).

Presumably, conventional glassy regimes emerge when certain structural correlations,
characteristic of a liquid state and involving the positions of the particles, are unable to relax
on the timescale of an experiment, and are therefore frozen in. (Note that I am sidestepping
the fundamental question of whether or not such correlations can be frozen in on infinite
timescales.) One of the central obstacles to the development of a sound theory of this phenom-
enon of glassiness is that, at least prima facie, it appears intrinsically dynamical (and perhaps
is so at its very core). If so, this would confer on the subject a level of technical complexity,
relative to issues that are amenable to treatment by the techniques of equilibrium statistical
mechanics for systems possessing extrinsic (rather than intrinsic, i.e., spontaneously generated)
quenched random constraints. The origin of the relative simplicity in the latter case is that
one is presented with a wide (and evident) separation between the (short) timescale for the
equilibration of unconstrained freedoms and the (long) timescale on which the constraints
break. This separation yields a window of times in which equilibrium statistical mechanics is
obviously applicable, and allows one to confidently finesse the task of statistical physics on
timescales comparable to any that are intrinsic to the system, which is, of necessity, a matter
of dynamics.

Extrinsic quenched random constraints, such as those introduced by the vulcanization
process, have precisely the effect of freezing in certain structural correlations characteristic
of a liquid state. However, not being intrinsic to the liquid, extrinsic constraints have an
independence from it that allows one to tune their density and, hence, to tune the state of the
system in a controllable fashion right through the random solidification transition. In this
sense, with vulcanized matter one has access to a critical ‘glass’ transition that one does not
have with intrinsically glassy systems. For the latter, the reliance on self-generated constraints
necessarily creates a (presumably highly significant) ‘feedback loop’ between the correlations
that are frozen in and the consequent state of the system. It does not seem unreasonable to
suppose that this feedback effect is what causes the critical random solidification transition to
be pre-empted by the conventional glass transition.

This point of view, which was elaborated in reference [2], served as the main motivation
for an exploratory approach to structural glasses begun in reference [4] and developed
in considerable detail in reference [5]. In this approach, one considers the equilibrium
statistical mechanics of a network built from low-molecular-weight molecules connected
at random by permanent covalent bonds. The formation of silica gel networks via a poly-
condensation/elimination reaction provides a concrete example of such networks; see, e.g.,
reference [6]. The essence of this approach is to identify correlations of the liquid state
(i.e. particles separated by a bond distance), to freeze in some fraction of these correlations
(as quenched random constraints) and to consider how the system responds. By this scheme,
we are ‘pushing off to infinity’ the timescale for the relaxation of these correlations ‘by hand,’
and thereby establishing a setting amenable to treatment by the techniques of equilibrium
statistical mechanics. This is a perfectly reasonable strategy for systems such as silica gel, in
which there is a clear separation of timescales; for conventional glasses the strategy represents
an idealization, and the question remains: To what extent is it a useful one?

What emerges from this approach to glassy systems? Put briefly (see reference [5] for
details), one finds a phase transition from a liquid to a random solid state characterized by a
rich order parameter, which encodes information not only about the positional localization of
the particles in the system but also about the consequent orientational localization of the bonds
that connect the particles (as well as thermal correlations between particle positions and bond
orientations).
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I think it is worth emphasizing that the approach to random solidification outlined here is
in fact rather straightforward (at least in spirit, if not practice): a semi-microscopic model leads
to a field theoretic representation that is amenable to treatment using a (rich and informative)
saddle-point approximation and, as we shall see, systematic improvements via the application
of renormalization-group ideas.

3. Detecting random solids: an order parameter

Let us briefly explore an order parameter capable of detecting the random solid state. For
detailed discussions, see references [1–3]. Consider a collection of N particles, labelled
j = 1, . . . , N and having d-dimensional positions {Rj }N

j=1. (The slight elaboration required
to handle macromolecular freedoms rather than point particles is not of importance to the
present discussion.) The basic element to focus on is the Fourier transform of the probability
density of finding the particle to be at some position r in the volume V , namely,∫

V

ddr
〈
δ(d)(r − Rj )

〉
exp ik · r = 〈

exp ik · Rj

〉
(1)

where 〈· · ·〉 denotes an equilibrium expectation value of a randomly constrained system,
perhaps in a broken-symmetry state. If particle j is delocalized, then, by translational invar-
iance,

〈
exp ik · Rj

〉 = δk,0. On the other hand, if it is localized, then a good model to bear in
mind for later use is〈

exp ik · Rj

〉 ≈ exp(ik · 〈Rj 〉) exp(−ξ 2
j k2/2) (2)

i.e., the Fourier transform of a Gaussian distribution for the particle position, characterized by
the mean position 〈Rj 〉 and the r.m.s. displacement (i.e. localization length) ξj . For future use,
it is worth noting the distinction between the k = 0 value and the k → 0 limit of |〈exp ik·Rj 〉|.
Of course, regardless of whether or not particle j is localized, one obtains unity precisely at
k = 0; by contrast, however, in the limit one finds zero if particle j is delocalized but unity if
particle j is localized.

The first construct a statistical mechanician might examine is the average of
〈
exp ik · Rj

〉
over the particles in the system:

1

N

N∑
j=1

〈
exp ik · Rj

〉
. (3)

Not surprisingly, if all particles are delocalized, then this quantity takes the value δk,0. However,
if some fraction of the N particles are localized but their mean positions 〈Rj 〉 are random,
then, for no k except 0 do the contributions add constructively, so the sum continues to take
the value δk,0. Thus the entity (3) fails to distinguish between the delocalized liquid and the
randomly localized solid, and does so in the much same way that the magnetization density
fails to distinguish between, e.g., the spin-glass and paramagnetic states.

So, what is the remedy? As with the spin-glass case, to avoid destructive interference one
considers more than one equilibrium expectation value under the average over particles (and
then disorder averages; see section 4.1.3):[

1

N

N∑
j=1

g∏
α=0

〈
exp ikα · Rj

〉]
(4)

where [· · ·] denotes disorder averaging. If all N particles are delocalized, then this entity only
fails to vanish for the trivial case of all wave vectors {kα}g

α=0 vanishing. However, if some
fraction q of the particles are localized with random mean positions, then the entity is non-zero
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whenever
∑g

α=0 kα vanishes, i.e., the random solidification transition is associated with the
change in form of (4) from being a ‘bump’ concentrated at the origin {kα = 0}g

α=0 of the
replicated wave-vector space, to being a ‘fin’ concentrated on the hyper-surface

∑g

α=0 kα = 0.
Thus we see that (4) serves as an order parameter for the liquid–amorphous-solid phase
transition. Moreover, the limit {kα → 0}g

α=0 (with
∑g

α=0 kα = 0) determines the fraction
of localized particles, and the shape of the fin determines the distribution of localization
lengths. For example, if the localized fraction is localized according to equation (2) then the
order parameter (4) will take the form

(1 − q)

g∏
α=0

δkα,0 + qδ�
g

α=0k
α,0

∫
dξ p(ξ) exp

(
−ξ 2

2

g∑
α=0

|kα|2
)

(5)

where

p(ξ) ≡
[
(qN)−1

∑
j loc.

δ(1)(ξ − ξj )

]

is the statistical distribution of the random localization lengths of the localized particles.
We note, in passing, that under Fourier transformation to real space (via the operation

V −1 ∑
k0 exp(−ik0 · r0) · · · V −1 ∑

kg exp(−ikg · rg) · · ·) this order parameter becomes

1 − q

V g+1
+

q

(2π)d(g+1)/2

∫
dξ p(ξ)ξ−d(g+1)

∫
V

ddρ

V
exp

(
− 1

2ξ 2

g∑
α=0

|rα − ρ|2
)

. (6)

If we regard the g + 1 replicas {rα}g

α=0 of the particle position as the positions of the g + 1
‘atoms’ of a ‘molecule’, then this joint probability distribution describes a molecular bound
state in replica space. That it is bound follows from localization; invariance under common
translations of the atoms follows from the randomness of the mean locations of the localized
particles; the shape of the bound state follows from the distribution of localization lengths.

4. Characteristics of the random solid state

So far, we have introduced an order parameter capable of detecting and diagnosing the random
solid state. We now turn to the question of computing it within various frameworks and for
various model settings.

4.1. Semi-microscopic replica theory for vulcanized macromolecules

The most direct approach to the computation of the order parameter arises in the setting
of randomly crosslinked macromolecular systems, and builds upon the formulation of
the statistical mechanics of such systems established in the beautiful work of Deam and
Edwards [7]. In the present article I shall just sketch the strategy, and encourage the reader to
turn to references [1, 8] for technical details.

4.1.1. Partition function. We begin with the partition function for a system of N identical,
interacting, flexible, uncrosslinked (and hence non-random) macromolecules, this partition
function describing the fluid (i.e. melt or solution) of uncrosslinked macromolecules. (We
view these macromolecules at the semi-microscopic level, which means that we ignore details
of their chemical constitution and, instead, consider featureless strands of matter.)
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4.1.2. Crosslinks as quenched random constraints. Now, how do we incorporate into this
semi-microscopic description the effects of random crosslinking? In three spatial dimensions,
at least, crosslinking has two distinct effects, which we may choose to call holonomic and
anholonomic. The holonomic effect of each crosslink serves to identify the positions of
two points on the macromolecules, chosen at random, i.e., to introduce a random constraint
that identifies two positional freedoms that formerly were kinematically independent. The
anholonomic effect serves to select a specific topological structure for the network: given the
collection of macromolecules and the collection of holonomic constraints, how are the macro-
molecules ‘woven’ into a d-dimensional network? The quenched random information is then:
(i) the catalogue of pairs of points that are identified by the crosslinks; and (ii) the specific
topology of the macromolecular strands subject to the identification of the pairs of crosslinked
points. As we shall discuss shortly, the holonomic aspect of crosslinking can readily be
incorporated; however, we know of no scheme capable of accounting for the anholonomic
aspect. Thus, in practice we shall treat the holonomic aspect as quenched random information,
but shall treat fluctuations between distinct network topologies as annealed variables. This is
not totally indefensible. First, the transition regime, which is the regime of interest to us here, is
characterized by rather light crosslinking—of order one crosslink per macromolecule—so the
effects of topology might reasonably be expected to be weak. Second, if one imagines coarse-
graining one’s view of the system, then the distinction between holonomic and anholonomic
constraints tends to blur, with knots and crosslinks having rather similar effects.

The next step is to specify, at random, a catalogue of pairs of points that are to be
identified by the crosslinks, i.e., to specify the quenched random information that determines
the holonomic aspect of the constraints. (Shortly, we shall discuss the issue of how to construct a
reasonable model distribution for this quenched random information.) We use this information
to remove from the sum over configurations (which constitutes the partition function for the
uncrosslinked system of macromolecules) all configurations that fail to satisfy the (holonomic
aspect of the) constraints. In practice this removal is accomplished by a suitable product
of Dirac delta functions, which is zero for configurations that do not obey the constraints.
The resulting partition function describes a specific realization of the randomly crosslinked
system and, just as the partition function for a spin glass depends on the quenched random
interactions, this partition function depends on the quenched random information describing
the constraints. As such, it is impractical to handle directly and, for the usual reasons, one
averages its logarithm, essentially the free energy of the randomly constrained system, over
some distribution of the quenched random information.

4.1.3. Distribution of crosslinks. How might one ascribe a statistical weight to a specific
realization of random crosslinks? One strategy, which is due to Deam and Edwards and
which I regard as extremely elegant [7], is to imagine the following experimental procedure.
Take the uncrosslinked liquid in equilibrium. Stop time. (Then the likelihood of finding any
configuration will be proportional to its Boltzmann weight.) Examine the configuration that
you have, and identify points of near-contact between macromolecules. Independently for each
near-contact, either do or do not introduce a crosslinking constraint with some probability. The
distribution of crosslinks thus constructed has the virtue of being determined by the equilibrium
state of the uncrosslinked liquid, together with a single number, the crosslinking probability,
the latter governing the (mean number) of crosslinks introduced and ultimately playing the
role of the control parameter for the phase transition from the liquid to the random solid state.

In fact, by choosing this Deam–Edwards crosslink distribution one is conferring upon
the system an additional—and highly convenient—symmetry. The origin of this symmetry
is the fact, which will become obvious to the reader after a moment’s reflection, that the
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Deam–Edwards crosslink probability distribution is itself proportional to the partition function
of the randomly crosslinked system. Perhaps this observation is not of much comfort at the
present stage, inasmuch as it only tells us that the theory contains one, rather than two, entities
that we have not yet managed to compute. But at least it is one and not two! And shortly
we shall see that this symmetry provides the reason why the replica theory turns out to have
(n + 1)-fold, rather than the usual n-fold, permutation symmetry.

It should be stressed that there is much more to this choice of crosslink distribution
than the enhanced symmetry it confers. Even more significantly, being based on a physical
vulcanization process it ensures that appreciable statistical weight is only given to those
realizations of the crosslinking that the macromolecules can accommodate, and thus it leads
to reasonable, space-filling, statistically homogeneous (random solid) states.

4.1.4. Replica statistical mechanics; replica field theory. Taking stock of the situation,
we see that we have a theory with: (i) annealed variables (the macromolecular coordinates),
(ii) quenched variables (the number and specification of the crosslinks), (iii) a random partition
function (containing random constraints on ‘street level’ rather than random interactions in the
exponent of the Boltzmann weight) and (iv) a distribution for the quenched randomness based
on a physical model for the vulcanization process. In the context of other random systems the
distribution might, e.g., be a Gaussian distribution of exchange interactions (spin glasses) or
of random impurity potentials (electronic transport).

Proceeding in the familiar way, we use the replica technique to compute the disorder
average of the logarithm of the partition function. However, in our setting of randomly
constrained systems, what emerges from this procedure may be quite unfamiliar. First, owing
to the ‘street level’ location of the constraint delta functions, together with the random number
of them, averaging over the quenched random variables yields a term in the exponent of the
(effective, pure) Boltzmann weight featuring a product over replicas, in contrast with the
more familiar pairwise coupling of replicas that commonly results from random interactions
(cf. exchange interactions in spin glasses or random impurity potentials in electronic transport).
This term has the effect of causing all pairs of segments of the replicated macromolecules to
attract one another in replicated space. Second, as mentioned above, the equilibrium average
involved in the construction of the crosslink distribution provides an additional replica, so we
end up with the n → 0 limit of a theory involving n + 1, rather than the usual n, replicas.

Now, how can we address the resulting pure, replica theory? We may, as is often done for
spin glasses, apply a Hubbard–Stratonovich decoupling transformation, which leads to a field
theory representation. (The virtues of this procedure are manifold: it suggests the physically
appropriate collective coordinates; it allows us to attack the problem using calculus; and it is
exact, and thereby provides us with a framework for going beyond mean-field theory.) In the
present context the necessary field turns out to be complex-valued and to live on (n + 1)-fold
replicated space, �(r0, r1, . . . , rn); it is precisely the Fourier transform of the order parameter
introduced and motivated on physical grounds in section 3. A standard linear-stability analysis
of this field theory reveals that there is indeed a phase transition, as the density of crosslinks
is increased. Moreover, provided that the underlying fluid consists of adequately repulsive
macromolecules, the stability analysis indicates that the instability is precisely of the physically
anticipated form: the liquid state becomes unstable and the instability is in the direction of the
random solid state.

But how does the instability actually get resolved? In other words, what is the precise form
of the state that replaces it? Let us begin by addressing this question at the level of mean-field
theory. (Going beyond mean-field theory will be discussed below, in section 7.) This natural
starting point can be accomplished in several equivalent ways. One may treat the field theory
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mentioned above at the saddle-point level. Or one can take the more direct route of replacing
fluctuating collective coordinates by their average values plus departures, and then linearizing
in the departures. Whatever the scheme, one ends up with a self-consistent equation for the
order parameter: a functional equation for the field �(r0, r1, . . . , rn).

In general, this equation is highly complicated, even to write down let alone solve.
However, in the random solid state, but near to the transition, the smallness of the fraction
of localized particles provides a simplification, allowing us to discard all but the quadratic
non-linearity in the self-consistent equation for the order parameter, which then reads

0 = 2

(
−aε +

b

2
|k̂|2

)
�(k̂) − 3c

∑
k̂1 k̂2

�(k̂1)�(k̂2)δk̂1+k̂2,k̂ . (7)

Here, a, b and c are model-dependent coefficients, ε measures the excess crosslink density
(beyond the mean-field critical value of zero) and �(k0, k1, . . . , kn) is the Fourier transform
of �(r0, r1, . . . , rn). To ease the notation we have taken to writing k̂ for {k0, k1, . . . , kn} so
that �(k0, k1, . . . , kn) becomes �(k̂) and

∑n
α=0 kα · kα becomes |k̂|2. The overbar on the

summations indicates that a certain class of terms is to be omitted from the summations: the
reason for this (vital) restriction will be discussed shortly. It is not difficult to verify that this
equation is exactly solved by the function given in equation (5), provided that one chooses
g = n (with n → 0), and (up to simple re-scalings involving a, b and c) the fraction of
localized particles q and the normalized distribution of localization lengths p(·) to be given by

q = 2ε/3 (8)

p(ξ) = (4/εξ 3)π(2/εξ 2) (9)

where the scaling function π(·) obeys the simple non-linear integro-differential equation

θ2

2

dπ

dθ
= (1 − θ)π −

∫ θ

0
dθ ′ π(θ ′)π(θ − θ ′) (10)

whose solution gives rise to the parameter-free prediction shown as the full line in figure 1
(bottom).

So, what have we found? At this stage we have found that a mean-field treatment of a
specific semi-microscopic model yields the following results:

(i) For crosslink densities smaller than a certain critical value (of roughly one crosslink per
macromolecule) the equilibrium state of the system is a liquid, with all particles (in the
context of macromolecules, monomers) being delocalized.

(ii) At the critical crosslink density there is a continuous thermodynamic phase transition to
a random solid state characterized by the presence of random static density fluctuations.

(iii) In this state, at least a fraction of the particles are localized near random positions about
which they thermally fluctuate with random localization lengths.

(iv) The fraction of localized particles grows linearly with the excess crosslink density,
consistent with the mean-field theory of percolation. As the transition is approached,
the characteristic localization length diverges as the inverse square root of the excess
crosslink density.

(v) When scaled by the mean value, the statistical distribution of localization lengths is
universal for all near-critical crosslink densities, the form of this scaled distribution being
uniquely determined by the integro-differential equation (10).

As one can see from figure 1, this picture has been rather well confirmed in
molecular dynamics computer simulations of three-dimensional systems of randomly
crosslinked, interacting macromolecules, undertaken at Simon Fraser University by Barsky
and Plischke [9, 10].
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Figure 1. Results from molecular dynamics simulations by Barsky and Plischke [10]. Top:
localized fraction q versus number of crosslinks per macromolecule n. L is the number of monomers
per macromolecule; N is the number of macromolecules in the system. The straight line is a fit
to the N = 200 data. Note the continuous phase transition at n = 1 and the linear variation of q

with n, both consistent with mean-field theory. Bottom: the distribution Ps of localization lengths
ξ (symbols), scaled with the sample-average localization lengths ξav. Note the collapse of the data
onto a universal scaling distribution, and the quantitative agreement with the mean-field prediction
(solid line). The number of segments per macromolecule was 10; the number of macromolecules
was 200.

4.2. Universality; simulations; a Landau theory

By repeating the strategy outlined above for several other systems that undergo random
solidification, including end-linked (flexible and semi-flexible) macromolecular systems [11],
chemically gelled low-molecular-weight systems [4, 5] and even crosslinked manifolds [12],
we have learned that the critical properties (i.e. the exponent for the localized fraction and the
scaling function for the distribution of localization lengths) are universal over a broad class of
systems, at least at the mean-field level. (The extension of this universality beyond mean-field
theory will be discussed in section 7.) Further evidence for this universality has come from
the extensive sequence of computer simulations mentioned above.

This universality at the mean-field level can be understood from the perspective of a
model-independent Landau approach [8]. Suppose we take for granted the idea that the
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order parameter is a complex-valued field on (n + 1)-fold replicated Fourier space: �(k̂).
Let us assume that near to the transition the fraction of localized particles is small and that
the localization length of the localized particles is large. Let us also assume that macro-
scopic density fluctuations are suppressed by inter-particle interactions, and therefore do not
fluctuate critically at the random solidification transition. As such fluctuations correspond
to field configurations in which, e.g., �(0, k, 0, . . . , 0) is non-zero, we should only allow
equilibrium values of � that vanish whenever all but one (or all) argument-vectors vanish.
Then (up to simple coefficients) we arrive at the following Landau free energy (per object—
e.g. macromolecule—being crosslinked):

∑
k̂

(
−aε +

b

2
|k̂|2

)∣∣�(k̂)
∣∣2 − c

∑
k̂1 k̂2 k̂3

�(k̂1)�(k̂2)�(k̂3)δk̂1+k̂2+k̂3,0̂. (11)

The innocuous-looking condition that � be zero whenever all but one (or all) argument-vectors
vanish, alluded to just after equation (7), amounts to our incorporating into the theory the effects
of inter-particle repulsions, and is vital.

As one can see from the quadratic term in the Landau theory, supercritical crosslinking
causes the liquid state to become unstable. However, the instability cannot be resolved as
it would be, say, in the case of ferromagnetism with its homogeneous ferromagnetic state,
by the ‘condensation’ of (i.e. acquisition of a non-zero value by) the homogeneous mode,
because there is no such mode in the theory. Instead, non-zero wave-vector modes acquire
non-zero values, and do so in a delicate balance determined by the cubic interaction term,
so as to form a kind of domain wall in momentum space. What is especially delicate is the
scheme by which the system avoids condensing in the (forbidden) macroscopic density sector.
By having condensation only of modes for which

∑n
α=0 kα = 0, the cubic interaction term

cannot induce the condensation of macroscopic density-sector fluctuations. One might say that
the competing tendencies of the crosslinks (which cause attraction simultaneously in replica
space) and the inter-particle repulsion (which acts separately in each replica) frustrate one
another, this frustration resolving itself via random solidification. Owing to its macroscopic
translational invariance, this state is a condensation that manages to avoid the energy cost that
macroscopic density-sector fluctuations would bring.

The condition on the field is also vital from a symmetry standpoint, and embodies the
notion that, provided inter-particle interactions are included, the only symmetry of the theory
associated with the mixing of the replicas is the permutation symmetry Sn+1. The replica
coupling arising from the disorder averaging of the replicated crosslinking constraints yields
a term that has the special feature of being invariant under the larger group O((n + 1)d) of
rotations that mix the (Cartesian components of the) replicas. However, this symmetry is
explicitly broken down to a permutation symmetry by the inter-particle interactions. This
reduced symmetry also plays vital roles in the analysis of the local stability of the random
solid state and the determination of the universality class of the phase transition in the context
of a renormalization-group approach to it, as we shall see further in section 7.

For specific values of the coefficients, this Landau theory is what emerges as the replica
mean-field theory for each of the semi-microscopic models considered (except that the theory
is a bit more elaborate for the gelation case). It is therefore not surprising that it, too, is made
stationary by the form given in equation (10).

4.3. Aside: broken symmetries and residual symmetries

In order to avoid confusion, let us be quite clear about the pattern of the symmetry breaking
emerging from our picture of the random solidification transition. The liquid state, even
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if crosslinks are present, is fully translationally invariant. Crosslinks do not, themselves,
explicitly break translational symmetry, even though their presence in sufficient numbers can
cause translational symmetry to break spontaneously, as occurs at the transition to the random
solid state, in which particles become spontaneously localized in space. All this applies to
specific realizations of crosslinking.

Now, what about the permutation symmetry of the replicated, disorder-averaged theory,
i.e., what about replica symmetry? Whether or not this symmetry also spontaneously breaks
at the transition is only an elaboration on top of the fundamental process, namely translational
symmetry breaking. To date, limited searches have been undertaken (see references [13, 14])
but no stable saddle points having broken replica symmetry have been found. Moreover,
local stability has been established (see reference [15]) for the saddle point described in
section 4.1.4. This saddle point has the symmetries of the permutation of the replicas and
the common translations and rotations of the replicas. What have been lost at the transition
are the symmetries of the relative translations and rotations of the replicas.

5. Emergent elasticity

Perhaps the most remarkable (and certainly the most useful) feature of the phase of matter
obtained via vulcanization is its elasticity. I will not dwell on this topic here; it is discussed
in references [3, 16]. I will just mention that, at least at the level of mean-field theory, one
can address rather directly the following question: By how much does the free-energy density
increase when a shear (i.e. volume-preserving) deformation is applied to sample of vulcanized
matter? In answering this question one finds that the random solid state is a homogeneous,
isotropic elastic medium, characterized by a standard elastic free energy. Moreover, one finds
that the shear modulus is (essentially) proportional to the temperature, confirming that the
elasticity is primarily entropic in origin, and that this modulus vanishes as the third power
of the excess constraint density, as the transition is approached from the liquid side. Some
of the probabilistic features of how random solids deform under shear (which seem rather
counter-intuitive, at least to me) are also discussed in references [3, 16].

6. Long-range correlations and divergent susceptibilities for random solidification

Let us now turn to the issue of long-range correlations that mark the onset of random
solidification, and the attendant issue of diverging susceptibilities. In the simpler context of,
say, the ferromagnetic Ising transition, the two-point spin–spin correlation function quantifies
the notion that the ‘by hand’ alignment of one particular spin induces appreciable alignment
of all the spins within roughly one correlation length of it, this distance growing as the
transition is approached. Now imagine approaching the random solidification transition from
the liquid side. The incipient order involves random localization and so, by analogy with the
ferromagnetic case, the appropriate correlation function is the one that answers the question:
Suppose that a particle is localized ‘by hand’; to what extent and over what spatial region
would other particles respond by becoming localized?

This scenario is, of course, the application to random solidification of the percolation
theory question: What is the likelihood that two sites separated by a certain distance will be
in the same cluster? After all, if two macromolecular segments are connected to the same
cluster then the ‘by hand’ localization of one would cause the localization of the other. Note,
however, the entire physical domain that is absent from any percolation picture, namely, the
thermal fluctuations of the particles: not only do the relative separations of the particles on
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the cluster fluctuate but also the state in question is liquid, so the particles are only relatively
localized, not localized in space.

Bearing these remarks in mind, let us consider the basic correlator associated with the
� field theory:

〈
�(k̂1)�(k̂2)

〉
. Not surprisingly, given that � is about to acquire a non-zero

expectation value, this correlator becomes long ranged at the transition. Indeed, at the Gaussian
level one has 〈

�(k̂1)�(k̂2)
〉 ∝ δk̂1+k̂2,0̂/(−2aε + bk̂2

1). (12)

But what about a physical interpretation? Well, as we have discussed in section 4, the field �

is closely related to the order parameter capable of detecting the localization associated with
random solidification and, thus, the growing correlations of � should foretell incipient random
localization, and they do. To see this, consider the construct

Ct(r − r′) ∝
[

1

N

N∑
j,j ′=1

〈
δ(d)(r − Rj )δ(d)(r′ − Rj ′)

〉

× 〈
exp(−it · (Rj − r)) exp(it · (Rj ′ − r′))

〉]
. (13)

For t = 0 this is simply proportional to the density–density correlation function and, as such,
is not of central importance at the random solidification transition. However, for t �= 0 it
addresses the question: If a particle near r is localized on the scale t−1 (or more strongly),
how likely is a particle near r′ to be localized on the same scale (or more strongly)? It is
straightforward to show that Ct(ρ) is related to the �–� correlator:

Ct(ρ) ∝ lim
n→0

∑
k

ei(k+t)·ρ〈�(0, t, k, 0, . . . , 0)∗�(0, t, k, 0, . . . , 0)
〉
. (14)

The t → 0 limit of Ct(ρ) determines how likely it is for two particles a distance |ρ| apart
to be connected in a cluster, i.e., to be mutually localized, regardless of the strength of this
localization. To construct the corresponding divergent susceptibility we integrate over space
and pass to the t → 0 limit, thus obtaining a measure of the spatial extent over which pairs of
particles are mutually localized:

lim
t→0

∫
ddρ Ct(ρ) ∝ lim

t→0
lim
n→0

〈
�(0, t, −t, 0, . . . , 0)∗�(0, t, −t, 0, . . . , 0)

〉 ∝ |ε|−γ .

At the Gaussian level of approximation, this susceptibility diverges with the classical exponent
γ = 1.

7. Critical fluctuations

So far, our exploration of the random solidification transition has been at the level of mean-
field theory (for the order parameter, elasticity and stability with respect to small fluctuations
of the solid state), and the Gaussian approximation (for the correlations in the liquid state).
What about critical fluctuations? In the present section I shall report some results on this issue
that have been obtained very recently in collaboration with Weiqun Peng [17] and primarily
concern critical fluctuations in the liquid state and at the critical point.

7.1. Replica field theory

Let us progress beyond mean-field theory and the Gaussian approximation by regarding
equation (11) not as a Landau theory but as a Landau–Wilson effective Hamiltonian for a
field theoretic approach to the issue of critical fluctuations. As such, it contains a Gaussian
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term and a cubic interaction term which, by naı̈ve dimensional analysis, can be seen to be the
most relevant perturbation below six spatial dimensions (at least in the n → 0 limit).

It is worth noting the similarities of and differences between this field theory and the
(cubic, (n + 1)-state Potts) field theory, the n → 0 limit of which can be invoked to study
percolation [18]:∫

V

ddr

( n∑
α=1

(
1

2
tψ2

α +
1

2
|∇ψα|2

)
− w(3)

n∑
α,β,γ =1

λ
(3)
αβγ ψαψβψγ

)
(15)

where t controls the bond-occupation probability (and hence the percolation transition), w(3)

is the non-linear coupling and λ
(3)
αβγ is the ‘Potts tensor’ (which controls the internal symmetry

of the theory). As for similarities, there is the cubic nature of the interaction, the (n + 1)-fold
permutation symmetry and the passage to the n → 0 limit. As for differences, the Potts
field theory has a real multiplet of n fields on d-dimensional space; the vulcanization field
theory has a real field living on (n + 1)-fold replicated d-dimensional space. Furthermore, the
Potts field theory represents a setting involving a single ensemble, the ensemble of percolation
configurations, whereas the vulcanization field theory describes a physical problem in which
two distinct ensembles (thermal and disorder) play essential roles. As such, the latter is capable
of providing a unified theory not only of the transition but also of the structure, correlations
and (e.g. elastic) response of the emerging random solid state.

7.2. Recovering de Gennes’ Ginzburg criterion

As we report in detail in reference [17], suppose we take the � field theory (11) and try to
assess the range of constraint densities δε (around the critical constraint density) within which
fluctuation corrections are significant, i.e., to construct a Ginzburg criterion. Then, provided
that we correctly account for the non-critical nature of the density fluctuations, we find that
fluctuations increase the critical crosslink density (as one would expect on general grounds),
along with a Ginzburg criterion which, for the case of vulcanized macromolecular matter, reads

δε ∼ (L/&)−(d−2)/(6−d)ϕ−2/(6−d) (16)

where L/& is the number of (essentially independent) segments on each chain and ϕ is the
volume fraction taken up by the macromolecules: e.g., for d = 3, shorter chains show stronger
critical effects. This dependence on L/& is precisely that derived long ago by de Gennes on
the basis of a percolative picture [19].

7.3. Expansion about six spatial dimensions

As we also report in detail in reference [17], we have, in addition, implemented a momentum-
shell renormalization-group approach to the field theory (11) in order to construct universal
quantities in an expansion around six spatial dimensions. Here, too, one has to exercise
considerable care in handling the vital constraint on the fields associated with the suppression
of density fluctuations by particle interactions. What emerges, at least to first order in 6 − d

(and probably beyond), is the following striking result: the critical state is governed by flow
equations isomorphic to those emerging from the percolation limit of the Potts field theory.
Thus, e.g., to first order in 6 − d the critical exponents η (=−(6 − d)/21, which describes
the decay of the order parameter fluctuation correlations at the vulcanization transition), ν−1

(=2− (5(6−d)/21), which describes the divergence of the fluctuation correlation length) and
β (=1 − ((6 − d)/7), which describes the growth of the localized fraction) take on precisely
the values that one would expect from examining analogous quantities in percolation theory.
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Although it is tempting to ask: ‘How could it be otherwise?’, it must be borne in mind
that the vulcanization field theory is not the same as the Potts field theory. It is richer, as it
emerges from an underlying semi-microscopic picture in which there are both quenched and
annealed variables, and contains a detailed description of the structure of the emergent random
solid state in addition to being capable of capturing the critical properties of the vulcanization
transition.

The nature of the vulcanization transition and its relationship with the percolation transition
in and around two spatial dimensions is an intriguing issue, as ongoing work with H E Castillo
and W Peng is revealing [20]. Things become especially fascinating in two dimensions in view
of the fact that there is a conventional percolation transition in there, whereas strong evidence (in
the form of Goldstone modes resulting from the spontaneously broken continuous translational
symmetry) suggests that two is the lower critical dimension for the vulcanization transition.
Thus, it is tempting to speculate that the following scenario holds in two dimensions [20]:

(i) With a subcritical density of constraints, the network does not percolate, there is no infinite
cluster, the vulcanization order parameter is zero and its correlations decay exponentially
with distance.

(ii) By contrast, with a supercritical density of constraints, the network percolates and there is
an infinite cluster; but thermal fluctuations in the positions of the constituents overwhelm
the tendency for true localization, so the amorphous solidification order parameter remains
zero and, instead, its fluctuations decay algebraically with distance. One might say that
(constraint-density-controlled) cluster fragmentation, rather than thermally excited lattice
defects, mediate the melting transition. If this scenario happens to be borne out, one
would have a quasi-amorphous solid state—the random analogue of a two-dimensional
solid [21]—exhibiting quasi-long-range positional order but of a random rather than
regular type.

8. Where next?

In addition to a full renormalization-group-based exploration of amorphous solidification in
and near two dimensions, touched upon in the previous paragraph, issues that I would very
much like to see addressed further include:

(i) dynamics near the vulcanization transition, including the divergence of the viscosity as
the transition is approached from the liquid side;

(ii) a full renormalization-group approach to the random solid state itself;

(iii) the possibility of multifractality in the characterization of random network media, say,
along the lines of that found in randomly diluted spin and resistor systems by Harris and
Lubensky [22]; and

(iv) quantized networks, perhaps a somewhat academic topic, but I think it would be fascinating
to have at hand a model showing that rigidity (perhaps one might call it Casimir rigidity) can
be acquired by random solids via quantum fluctuations, rather than the thermal fluctuations
discussed here.

I would also very much welcome further experiments, such as quasi-inelastic neutron scattering
ones, aimed, e.g., at extracting information about the distribution of localization lengths near
the random solidification transition.
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